Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 584: 7-14, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34753066

RESUMO

Patients with triple-negative breast cancer have a poor prognosis as only a few efficient targeted therapies are available. Cancer cells are characterized by their unregulated proliferation and require large amounts of nucleotides to replicate their DNA. One-carbon metabolism contributes to purine and pyrimidine nucleotide synthesis by supplying one carbon atom. Although mitochondrial one-carbon metabolism has recently been focused on as an important target for cancer treatment, few specific inhibitors have been reported. In this study, we aimed to examine the effects of DS18561882 (DS18), a novel, orally active, specific inhibitor of methylenetetrahydrofolate dehydrogenase (MTHFD2), a mitochondrial enzyme involved in one-carbon metabolism. Treatment with DS18 led to a marked reduction in cancer-cell proliferation; however, it did not induce cell death. Combinatorial treatment with DS18 and inhibitors of checkpoint kinase 1 (Chk1), an activator of the S phase checkpoint pathway, efficiently induced apoptotic cell death in breast cancer cells and suppressed tumorigenesis in a triple-negative breast cancer patient-derived xenograft model. Mechanistically, MTHFD2 inhibition led to cell cycle arrest and slowed nucleotide synthesis. This finding suggests that DNA replication stress occurs due to nucleotide shortage and that the S-phase checkpoint pathway is activated, leading to cell-cycle arrest. Combinatorial treatment with both inhibitors released cell-cycle arrest, but induced accumulation of DNA double-strand breaks, leading to apoptotic cell death. Collectively, a combination of MTHFD2 and Chk1 inhibitors would be a rational treatment option for patients with triple-negative breast cancer.


Assuntos
Aminoidrolases/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Metilenotetra-Hidrofolato Desidrogenase (NADP)/antagonistas & inibidores , Enzimas Multifuncionais/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Administração Oral , Aminoidrolases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/metabolismo , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Enzimas Multifuncionais/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-32544819

RESUMO

ATP-binding cassette transporter C4 (ABCC4) is associated with multidrug resistance and the regulation of cell signalling. Some prostaglandins (PGs), including: PGE2, PGF2α, PGE3, and PGF3α are known substrates of ABCC4, and are released from some types of cells to exert their biological effects. In the present study, we demonstrate that PGD2 is a novel substrate of ABCC4 using a transport assay based on inside-out membrane vesicles prepared from ABCC4-overexpressing cells. Then, we used two types of cell lines with confirmed ABCC4 mRNA and PGD2 release capacity (human mast cell lines HMC-1 cells and human rhabdomyosarcoma cell lines TE671 cells) to evaluate the contribution of ABCC4. The extracellular levels of PGD2 were unchanged following addition of a selective ABCC4 inhibitor in TE671 cells. Pharmacological inhibition and knockdown of ABCC4 significantly reduced the extracellular levels of PGD2 by at least 53% in HMC-1 cells. Moreover, the extracellular levels of PGD2 decreased by at least 20% using the selective ABCC4 inhibitor in the other mast cell line RBL-2H3 cells. Therefore, our results suggest that ABCC4 functions as a PGD2 exporter in HMC-1 cells.


Assuntos
Mastócitos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Prostaglandina D2/metabolismo , Transporte Biológico Ativo , Linhagem Celular Tumoral , Humanos
3.
J Med Chem ; 62(22): 10204-10220, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31638799

RESUMO

We report the discovery of a potent and isozyme-selective MTHFD2 inhibitor, DS18561882 (2). Through investigation of the substituents on our tricyclic coumarin scaffold (1,2,3,4-tetrahydrochromeno[3,4-c]pyridin-5-one), MTHFD2 inhibitory activity was shown to be elevated by incorporating an amine moiety at the 8-position and a methyl group at the 7-position of the initial lead 1. X-ray structure analysis revealed that a key interaction for enhanced potency was salt bridge formation between the amine moiety and the diphosphate linker of an NAD+ cofactor. Furthermore, ortho-substituted sulfonamide in place of benzoic acid of 1 significantly improved cell permeability and cell-based growth inhibition against a human breast cancer cell line. The thus-optimized DS18561882 showed the strongest cell-based activity (GI50 = 140 nM) in the class, a good oral pharmacokinetic profile, and thereby tumor growth inhibition in a mouse xenograft model upon oral administration.


Assuntos
Aminoidrolases/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/antagonistas & inibidores , Enzimas Multifuncionais/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
4.
ACS Med Chem Lett ; 10(6): 893-898, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31223444

RESUMO

Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) plays a key role in one-carbon (1C) metabolism in human mitochondria, and its high expression correlates with poor survival of patients with various types of cancer. An isozyme-selective MTHFD2 inhibitor is highly attractive for potential use in cancer treatment. Herein, we disclose a novel isozyme-selective MTHFD2 inhibitor DS44960156, with a tricyclic coumarin scaffold, which was initially discovered via high-throughput screening (HTS) and improved using structure-based drug design (SBDD). DS44960156 would offer a good starting point for further optimization based on the following features: (1) unprecedented selectivity (>18-fold) for MTHFD2 over MTHFD1, (2) a molecular weight of less than 400, and (3) good ligand efficiency (LE).

5.
Int J Oncol ; 48(4): 1670-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26893131

RESUMO

Agaricus blazei (A. blazei) is a mushroom with many biological effects and active ingredients. We purified a tumoricidal substance from A. blazei, an ergosterol derivative, and named it 'Agarol'. Cytotoxic effects of Agarol were determined by the MTT assay using A549, MKN45, HSC-3, and HSC-4 human carcinoma cell lines treated with Agarol. Apoptosis was detected by flow cytometry analysis. Reactive oxygen species (ROS) levels and mitochondria membrane potential (∆ψm) were also determined by flow cytometry. Western blot analysis was used to quantify the expression of apoptosis-related proteins. Agarol predominantly induced apoptosis in two p53-wild cell lines (A549 and MKN45) compared to the other p53-mutant cell lines (HSC-3 and HSC-4). Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of ROS, reduced ∆ψm, release of apoptosis-inducing factor (AIF) from the mitochondria to the cytosol, upregulation of Bax, and downregulation of Bcl-2. Caspase-3 activities did not increase, and z-VAD-fmk, a caspase inhibitor, did not inhibit the Agarol-induced apoptosis. These findings indicate that Agarol induces caspase-independent apoptosis in human carcinoma cells through a mitochondrial pathway. The in vivo anticancer activity of Agarol was confirmed in a xenograft murine model. This study suggests a molecular mechanism by which Agarol induces apoptosis in human carcinoma cells and indicates the potential use of Agarol as an anticancer agent.


Assuntos
Agaricus/química , Antineoplásicos/administração & dosagem , Ergosterol/administração & dosagem , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ergosterol/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA